Multi–objective Evolutionary Optimization of Accuracy and Interpretability for Neuromuscular Blockade Control
نویسندگان
چکیده
We further investigate the relationship between accuracy and interpretability during the design of fuzzy systems. Both aspects are of major importance for the control of neuromuscular blockade. After describing how these goals can be measured, a multi-objective evolutionary optimization scheme is set up. The results show that even for the best optimization runs at the accuracy side of the Pareto front, the most accurate solutions detain an acceptable degree of interpretability.
منابع مشابه
A Review on the Interpretability-Accuracy Trade-Off in Evolutionary Multi-Objective Fuzzy Systems (EMOFS)
Interpretability and accuracy are two important features of fuzzy systems which are conflicting in their nature. One can be improved at the cost of the other and this situation is identified as “Interpretability-Accuracy Trade-Off”. To deal with this trade-off Multi-Objective Evolutionary Algorithms (MOEA) are frequently applied in the design of fuzzy systems. Several novel MOEA have been propo...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملImproving interpretability in approximative fuzzy models via multi-objective evolutionary algorithms
Current research lines in fuzzy modeling mostly tackle with improving the accuracy in descriptive models, and the improving of the interpretability in approximative models. This paper deals with the second issue approaching the problem by means of multi-objective optimization in which accurate and interpretability criteria are simultaneously considered. Evolutionary Algorithms are specially app...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کامل